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Problem setup

minimize
x

f (x) = h(x ; S(x))

subject to: x ∈ D ⊂ Rn

where the objective f depends on the output(s) from a simulation S
and a known function h.

I Derivatives of S may not be available
I Constraints defining D may or may not depend on S
I The dimension n is small
I Evaluating S is expensive (not using grids or

randomized/evolutionary methods)
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Computers/Simulations!
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Computers/Simulations!

#21 on TOP500 November 2018 (#6 on TOP500 June 2016)
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Model-based methods - Interpolation
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Opening up the black box
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Serial** PSO

Serial Simplex

Serial POUNDERS

1024−Core PSO

Tuning quadrupole moments for a particle accelerator simulation.

f (x) = ‖S(x)− T‖22 =

p∑
i=1

(Si (x)− Ti )
2

Can either have a solver that uses f (x) or [S1(x), . . . ,Sp(x)].
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Emittance minimization

minimize
v∈Rn

ε(v)

subject to: v ∈ D

where
ε(v) =

√
〈x(v)2〉〈px (v)2〉 − 〈xpx (v)〉2
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Emittance minimization

minimize
v∈Rn

min
t
ε(v , t)

subject to: v ∈ D
0 ≤ t ≤ t̄,

where
ε(v , t) =

√
〈x(v , t)2〉〈px (v , t)2〉 − 〈xpx (v , t)〉2
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Exploiting Structure

I Nonsmooth, composite optimization

minimize
x

f (x) = h(S(x))

nonsmooth h : Rp → R (with a known structure), smooth
S : Rn → Rp (expensive to evaluate).

I Idea: Build p models, one for each component of S . Use model
gradients in place of ∇S .

I Requires a manifold representation of h.
I Example: censored `1 loss:

f (x) =

p∑
i=1

|di −max {ci ,Si (x)}|
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Manifold representation

I h(y) = max
i∈{1,...,p}

yi p manifolds

I h(y) = ‖y‖∞ = max
i∈{1,...,p}

|yi | 2p manifolds

I h(y) = ‖y‖1 =

p∑
i=1

|yi | 2p manifolds

I h(y) =

p∑
i=1

|di −max {ci , yi}| 3p manifolds. If p = 45,

approximately 3× 1021 potential manifolds.

User scripts need to calculate:

f (x), S(x), H(S(x)), {∇hi (S(x)) : i ∈ H(S(x))}, {hi (S(x)) : i ∈ G},
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Manifold Sampling
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Smooth master model

gk , proj
(
0, co

(
Gk)) ∈ co

(
Gk) ,

where

Gk ,
⋃

i∈Ih(S(xk ))

{
∇M(xk)∇hi (S(xk))

}
or
Gk ,

⋃
y∈Y

⋃
i∈Ih(S(y))

{
∇M(xk)∇hi (S(xk))

}
Define the smooth master model mf

k : Rn → R (with gradient gk) and
obtain step by (approximately) solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

11 of 16
.



Smooth master model

gk , proj
(
0, co

(
Gk)) ∈ co

(
Gk) ,

where

Gk ,
⋃

i∈Ih(S(xk ))

{
∇M(xk)∇hi (S(xk))

}

or
Gk ,

⋃
y∈Y

⋃
i∈Ih(S(y))

{
∇M(xk)∇hi (S(xk))

}
Define the smooth master model mf

k : Rn → R (with gradient gk) and
obtain step by (approximately) solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

11 of 16
.



Smooth master model

gk , proj
(
0, co

(
Gk)) ∈ co

(
Gk) ,

where

Gk ,
⋃

i∈Ih(S(xk ))

{
∇M(xk)∇hi (S(xk))

}
or
Gk ,

⋃
y∈Y

⋃
i∈Ih(S(y))

{
∇M(xk)∇hi (S(xk))

}

Define the smooth master model mf
k : Rn → R (with gradient gk) and

obtain step by (approximately) solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

11 of 16
.



Smooth master model

gk , proj
(
0, co

(
Gk)) ∈ co

(
Gk) ,

where

Gk ,
⋃

i∈Ih(S(xk ))

{
∇M(xk)∇hi (S(xk))

}
or
Gk ,

⋃
y∈Y

⋃
i∈Ih(S(y))

{
∇M(xk)∇hi (S(xk))

}
Define the smooth master model mf

k : Rn → R (with gradient gk) and
obtain step by (approximately) solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

11 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Manifold Sampling

12 of 16
.



Better trust-region subproblem?
Instead of solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

How about

minimize
s

h(M(xk + s))

subject to: s ∈ B(0,∆k)

For censored `1 loss:

minimize
s

p∑
i=1

|di −max {ci , qi (x)}|

subject to: s ∈ B(0,∆k)

Question
Best method for solving composite nonsmooth quadratic problems?
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Thanks

Questions?

jmlarson@anl.gov
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